Heat Kernel Embeddings, Differential Geometry and Graph Structure

نویسندگان

  • Hewayda ElGhawalby
  • Edwin R. Hancock
چکیده

In this paper, we investigate the heat kernel embedding as a route to graph representation. The heat kernel of the graph encapsulates information concerning the distribution of path lengths and, hence, node affinities on the graph; and is found by exponentiating the Laplacian eigen-system over time. A Young–Householder decomposition is performed on the heat kernel to obtain the matrix of the embedded coordinates for the nodes of the graph. With the embeddings at hand, we establish a graph characterization based on differential geometry by computing sets of curvatures associated with the graph edges and triangular faces. A sectional curvature computed from the difference between geodesic and Euclidean distances between nodes is associated with the edges of the graph. Furthermore, we use the Gauss–Bonnet theorem to compute the Gaussian curvatures associated with triangular faces of the graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Partitioning Well-Clustered Graphs with k-Means and Heat Kernel

We study a suitable class of well-clustered graphs that admit good k-way partitions and present the first almost-linear time algorithm for with almost-optimal approximation guarantees partitioning such graphs. A good k-way partition is a partition of the vertices of a graph into disjoint clusters (subsets) {Si}i=1, such that each cluster is better connected on the inside than towards the outsid...

متن کامل

Representation, Segmentation and Matching of 3D Visual Shapes using Graph Laplacian and Heat-Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

Matching of 3 D Visual Shapes using Graph Laplacian and Heat - Kernel

3D shape analysis is an extremely active research topic in both computer graphics and computer vision. In computer vision, 3D shape acquisition and modeling are generally the result of complex data processing and data analysis methods. There are many practical situations where a visual shape is modeled by a point cloud observed with a variety of 2D and 3D sensors. Unlike the graphical data, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Axioms

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015